Morphological, Morphometric and Molecular Characterization of the Plant-Parasitic Nematode: *Hemicycliophora conida* Thorne, 1955 (Nematoda: Hemicycliophoridae) from Ethiopia

Gezahegne Getaneh¹, Wilfrida Decraemer² and Wim Bert² ¹, Ambo Plant Protection Research Center, P.O. Box 37 Ambo, e-mail address: Gezahegne_98@yahoo.com Ethiopia ²Nematology Section Department of Biology, Faculty of Sciences, Ghent University; K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.

Abstract

Nematodes are considered as one of the most difficult organisms to identify because of their morphological similarity, microscopic size, limited number of informative morphological characters, and overlapping morphometric measurements. Root ectoparasite nematodes of the genus *Hemicycliophora* have wide distribution all over the world and feed on wide range of crop plants. The identified specimens of H. conida were found from rhizosphere of horticultural crops in the Rift Valley region of Ethiopia and were characterized morphologically and molecularly. Morphometric and morphological descriptions were done using light microscopy. *H. conida* most closely resembles *H. typica*, but it differs by lack of sperm cell in the spermathecia. Phylogenetic analysis was done using Bayesian inference method. Based on the full 18S SSU rDNA sequence, the resulted tree showed monophyly with sequence of *H. conida* deposited in the GeneBank from the Netherlands with 3bp nucleotide difference. This report represents the first comprehensive information on this species from Ethiopia.

Key words: Bayesian inference, Hemicycliophora, morphometric, morphology, phylogeny

Introduction

Plant-parasitic nematodes are known to be of economic importance to crop production in Ethiopia (Abraham 2009) but limited surveys have led to the identification of several plantparasitic nematode genera/species associated with horticultural crops. So far the following nematode taxa were reported from Ethiopia by different authors; *Helicotylenchus* Steiner, 1945, *Hemicycliophora* de Man, 1921; Macroposthonia Andrassy, 1965; Meloidogyne Goldi, 1892; Pratylenchus Filipjev, 1936; Scutellonema Andrassy, 1958; Rotylenchus Filipjev 1936; Trichodorus Cobb, 1913; Aphelenchoides Fischer, 1894 reported from Ensete ventricosum by Tessera et al 2009; Bogale et al. 2004; Helicotylenchus multicinctus (Cobb, 1893) Golden, 1956; Rotylenchulus spp., Helicotylenchus spp.,

Pest Mgt. J. Eth. 15: 1-13 (2011)

Meloidogyne Radopholus similis, spp. Helicotylenchus multicinctus, Pratylenchus goodevi, Rotylenchulus anamictus, reported from Musa sp. (Mohammed et al. 2009). Abebe and Geraert (1995) recorded one new species and other four species of plant parasitic nematodes; viz, Discocriconemella addisababa, Criconemella parva, Paratvlenchus leptus, Scutellonema brevistyletum and Helicotvlenchus abunaamai. O' Bannon (1975) reported. Heterodera spp., Meloidogyne incognita, M. javanica, M. ethiopica, Helicotylenchus spp., Pratylenchus vegetables. Helicotylenchus spp., from Helicotylenchus dihvstera multicinctus, (Cobb, 1893) Sher, 1961, Helicotylenchus californicus Sher, 1966 Helicotylenchus gerti Marais, Mekete & Tiedt, 2005, Scutellonema Sharma, 1994, paralabiatum Siddigi et Rotylenchus unisexus Sher. 1965, **Tylenchorhynchus** Ferris, 1963. agri Ouinisulcius capitatus (Allen, 1955) Siddigi 1971, Xiphinema insigne Loos, 1949. Xiphinema basilgoodeyi Coomans, 1965, two species of Xiphinema americanum sensu lato reported from coffee crop by Mekete et al., 2008. Pratylenchus brachyurus, P. zeae, Meloidogyne incognita, Helicotylenchus dihystera, *Hoploliamus* indicus. Tylenchorynchus brassicae and Rotylenchus reniformis were recorded from Southwestern Ethiopia to be affecting soybean cultivars (Agu, 2006).

Plant-parasitic nematode surveys and identification in Ethiopia often focused on Meloidogyne spp. (Wondirad, Tesfamariam 2002). To our knowledge, identification of plant-parasitic nematodes in Ethiopia were mainly done based on light microscopic observations of morphological and morphometric characters. However, for some groups such as Meloidogyne, protein-based biochemical techniques (gel electrophoresis and immunological techniques) were used in addition to differentiate species (Wondirad, Kifle 2000).

Based on their morphological similarity, microscopic size, limited number • of informative morphological characters and overlapping of morphometric measurements, nematodes are considered as one of the most difficult organisms in identification (Claudio 2011). Root ecto-parasite nematodes of the genus Hemicycliophora de Man, 1921 have wide distribution and feed on wide range of crop plants. Morphological characters alone are limited and insufficient to determine the species boundaries and resolve relationships. New methods using sequence analysis of the ribosomal DNA have proven to be useful for identification and molecular phylogenetic analysis. The introduction of identification tools such as bar coding and the sequencing of several nuclear and mitochondrial genes helped differentiating phenotypically in closely resembling species. In combination with morphology, molecular analyses provide a very useful identification tool (Coomans 2000, Subbotin & Moens 2006).

The objective of this study was to identify morphologically and molecularly the plant parasitic nematode (*Hemicycliophora conida*) found in the Rift Valley region of Ethiopia. The current study provides additional information on identification of plant-parasitic nematodes from Ethiopia.

Materials and Methods

Sampling

Soil samples from rhizosphere of main and permanent horticultural crops in the Rift Valley basin of Ethiopia were sampled during August, 2010 to determine the identity and population density of plant-parasitic nematodes. All sampled sites were located in the Rift Valley basin of Oromia Regional States. (Table 1). During this survey unique populations of sheath nematode (Hemicycliophora conida) of the species were detected in association with the surveyed plants.

Sampling	Distance from									
Site	Regional state	Addis Ababa (km)	Elevation (masl)	GPS location						
Melkassa	Oromiya	115	1553	8º24'N 39º 21' E						
Tibila	Oromiya	175	1337	8º 26'N 39º 35' E						
Wonji	Oromiya	107	1545	8º 26'N 39º 13'E						

Table 1. Distribution of sampling sites, geographical locations and distance from the center

Soil samples were taken from six field sites. Each 1 kg soil sample consisted of 10-15 cores taken from the top 10-14 cm rhizosphere soil around the rhizosphere with auger. From each bulked sample, 200 g of subsample was taken for further investigation. The samples were kept in plastic bags in an ice box during transportation and taken to the laboratory for nematode extraction and identification. Nematodes were extracted using the modified Baermann method (Hooper 1985). Briefly, samples were divided in two 100 g each and placed in a 20 cm modified Baermann tray in order to hold soil above water and on top of it covered by tissue paper. Water was carefully added inside edge of tray until soil layer is wet. After 36 hours, the baskets were carefully removed and nematode suspensions were collected from tray and subdivided in two beakers (for molecular and morphological tests) for an hour to concentrate or settle the nematodes.

Morphological Observations

Formalin (4% with 1% glycerin) was heated to 70°C and added quickly to kill & fix nematodes in one step (Seinhorst, 1966). The fixed specimens were processed to anhydrous glycerin following the glycerin-ethanol method of Seinhorst (1959) and modified by De Grisse (1969). Fixed specimens were permanently mounted in anhydrous glycerol (Hooper, 1985) within a paraffin ring on thin microscope glass slides (26 mm x 76 mm) and 19 mm diameter round cover slips. For morphometric data and description, nematode specimens were drawn using Olympus BX50 and Olympus CH30 light microscopes. The morphometric data were taken according to de Man (1980) and Siddiqi (2000). Voucher specimens are

deposited at Ghent university Nematode collection as UGnem-36.

DNA extraction, PCR and

sequencing

For molecular characterization, half of the extract was used after preserving with DESS solution containing 20% dimethyl sulphoxide (DMSO) and 0.25 M disodium EDTA, saturated with NaCl, pH 8.0 (Seutin et al. 1991). This was done according to Yoder et al. 2006. Individual nematode from the solution was mounted on temporary slides and identified using light microscope. For DNA extraction, nematodes were mechanically disrupted in 25 µl of premixed worm lysis buffer (WLB) containing 50mM KCl, 10mM Tris, pH 8.3, 2.5mM MgCl2, 0.45% NP 40 (Tergitol Sigma), and 0.45% Tween 20 (Thomas et al., 1997) and stored at -80°C for 10 min. Then after, 1µl of proteinase K were added and incubated in the PCR machine at 65°C for one hour followed by 10 min at 95°C.

Polymerase Chain Reaction

The 18S SSU rDNA region were PCR amplified using G18S4 & 4F (forward) and 18P & 4R (reverse) primers (Blaxter *et al.* 1998). A master mix of Toptaq Qiagen was prepared (Taq DNA Polymerase, Qiagen, Germany) and DNA template was used. All PCR reactions were conducted by Thermo cycler with a cycle profile of: 1 cycle at 96°C for 4 min followed by 40 cycle at 95°C for 30 second, 54°C for 30 second, 72°C for 1 min. The last step was 72°C for 10 min. The PCR product was loaded on 1% Agarose gel and stained with Ethidium bromide. Sequencing protocol for BigDye V3.1 on ABI 3130XL were used and cycle sequencing were performed by terminator ready reaction mix, cleaned PCR product, primers (2FX, 23R, 23F, 9FX, 9R, 26R) and sterile water. Primers used for sequencing of 18S SSU rDNA were: 9FX, 2FX, 13R, 23F, 23R 9F, 9R and 26R (Blaxter *et al.* 1998, Meldal *et al.* 2007, Bert 2008). Samples were loaded with 10µl Hi-Di Formamide and transferred from each tube to a 96 well plate and the plates were put in the sequencer and run by automated DNA sequencer. Sequencing was performed in both directions.

Phylogenetic Analysis

The sequence results of the 18S SSU rDNA region were aligned with sequences of the related species from the GenBank using ClustalW (Thompson *et al.* 1994) provided by BioEdit sequence alignment editor (Hall 1999). Phylogenetic analyses were performed .by Bayesian inference (BI) method with MrBayes v3.1.2 (Ronquist & Huelsenbeck 2003). A general time-reversible model with rate variation across sites and a proportion of invariable sites (GTR + I + G) was used. Analyses were run for 3×10^6 generations and

trees were generated using the last 1,000,000 generations beyond the burn-in value. Also other methods (maximum parsimony, neighbor joining, maximum likelihood) using PAUP: Phylogenetic Analysis Using Parsimony (Swofford 2002) provided the same tree topologies but is not further discussed herein.

Results and Discussions

A total of 1670 specimens' of plant-parasitic nematodes associated with horticultural crops at different localities and host plants were identified to genus level. The genera Hemicycliophora, Xiphinema and Rotvlenchulus were the most abundant nematodes in the samples taken. Hemicycliophora conida Thorne, 1955, was characterized morphologically and studied further on the basis of molecular phylogeny.

Descriptions

HEMICYCLIOPHORA CONIDA THORNE, 1955 Materials: Fifty-one female specimens from five host crops were examined.

Topotypes from Loof (1968) Samples (per host) H. typica H. conida I H. conida II Characters Guava Citrus Citrus Sugarcane Grapevine Banana **26**오 **100**♀ **83**Q **6**♀ **10**오 **10**오 **10**오 89 **7**♀ n= L 666±52 687±41 696 ± 44 702±42 710±23 701±35 680-850 840 790 (680-760) (660-990) (640-870) (584-736) (640-736) (648-800) (640-744)(632-768) 23 (18-27) 21-26 23 (18-28) 19±2 (15-21) 22±2 (20-26) 20±1 (18-22) 22±1 (20-24) 21±2 (19-24) Α 22±1 (20-24) 5.1-5.7 5.2 (4.5-6) 5.1 (4.1-5.7) В 5 (5-6) 5 (5-6) 5 (5-6) 5 (4-6) 5 (5-6) 5 (5-6) 9±1 (8-10) 9 (8-9) 8.8-10.9 11.1 11 (8.3-13.5) (8.7-14.4)8±1 (7-9) С 8±1 (7-10) 9±1 (8-10) 8±1 (7-10) 3 (2-3) 3 (3-3) 3 (3-4) 3 (3-3) 3 (3-4) 3 (3-4) C' 83-86 86 (84-88) 87 (83-90) ٧% 83±1 (81-85) 82±1 (81-84) 82±1 (80-84) 83±2 (80-85) 82±1 (81-84) 83±1 (81-84) 80 (69-86) 87 (78-96) stylet 61±4 (53-66) 58±3 (54-62) 61±2 (57-65) 61±4 (55-66) 62±2 (59-64) 61±2 (59-65) 131±3 130±3 Pharynx length 127±8 127±5 131±3 129±8 (127 - 136)(127 - 135)(113 - 139)(121-131) (127 - 135)(115-141) 32±3 (27-35) 35±2 (32-39) 33±2 (30-36) 33±3 (30-38) Body width 35±6 (30-48) $32\pm3(25-34)$ 27±2 (25-30) 25±2 (23-28) 28±2 (26-31) Anal b. width 28±5 (25-39) 27±1 (25-28) 27±2 (25-30) Tail length 80±8 (69-91) 77±8 (69-90) 80±9 (67-96) 84±10 (70-98) 83±5 (77-94) 86±9 (78-105) 204 (180-220) 203±6 194±8 208±8 188 ± 26 201±5 205±6 193-210 245 (227-274) R (193-210) (182-204) (197-219)(121-212) (192-208)(198-215) 40 (36-43) 37-42 48 (42-53) 39±1 (37-40) 39±2 (37-42) Rex 39±4 (33-46) 40±1 (38-41) 41±1 (39-43) 38±2 (35-42) 13 (9-16) 11-16 15 (11-21) Rva * 11±2 (8-13) 14±2 (11-18) 12±2 (10-15) 13±1 (11-14) 14±1 (12-16) 14±1 (11-15) 27 (20-32) 28-32 33 (24-39) 34±5 (27-42) 30±4 (26-38) 34±7 (28-47) 32±4 (24-37) 31±3 (27-37) 33±3 (28-38) Ran

Table 2. Morphometrics of Hemicycliophora conida Thome, 1955 collected fromAll measurements are in µm and in the form: Mean ± standard deviation (Range)

n= number of specimens; L= total body length in µm; a= body length/greatest body width; b= body length/ distance from anterior end to junction of pharynx and intestine c= body length/ tail length; c'= tail length/ body width at anus V= distance of vulva from anterior end x 100/body length; R=Number of body annuli; Rex=Annuli between labial disc and first annuli after excretory pore; Ran =Number of annuli from tail terminus to anus; Rva =Number of annuli between vulva and anus

5

Figure 2. Light Microscopy drawings of Hemicycliophora conida. A: lateral field at mid body; B: Head region; C: tail shape; D: Female reproductive system; E: Entire body

Description

Female. Body nearly straight when relaxed, some specimens with slightly bent ventrally in the post vulvar part. Body length with a range

of 666-710 μ m. Double cuticle, the outer cuticle fitting close. On the distal portion of tail, very fine but distinct annules visible. Body clearly annulated with 188 to 208 annules in range of all population. Lateral field indicated

except in anterior most part and at terminal ends (tail and lip region), with two longitudinal lines, between which break by transverse striae over the whole body, outside of lateral field cuticle with numerous longitudinal lines forming regular blocks over whole length. Lateral lips lower than submedian lips. Labial disc in line with the apices of the submedian lips. Stylet mean range within 58-62µm. Basal of stylet knob directed backward and slightly elevated. Pharynx, range of mean value 127-131µm from anterior end to middle of median bulb. Excretory pore near the end of pharyngeal bulb, 38-41 annules range of mean value from anterior end. Hemizonid clearly visible near the end of pharynx and 3-4 annules anterior to excretory pore. Vulva lips modified, elongate post vulval, but irregular. Posterior vulva position (range of mean 82-83% from the anterior end of body, range mean values). Female reproductive system prodelphic, monodelphic, outstretched. Uterus long and thin with round spermatheca without sperm. Post vulvar body cylindrical, tapering at the end. Anus hardly marked. Tail (77-86 µm length) largely cylindrical, with narrow marked conoid distal end with pointed tip. (Fig. 2 &3).

Figure 3. Light microscopy photographs of *Hemicycliophora conida;* A: Entire body, B: head region, C: Stylet knob and hemizonid; D: tail shape; E: Vulva and spermatheca (Scale bars: A, C, D, E= 20µm; B= 50µm) -

Remarks

The studied Ethiopian specimens most closely resembles H. conida Thorne, 1955 form II (according to Loof 1968) in body habitus, body length, range mean number of body annules, number of annules from anterior end to excretory pore, empty spermatheca, basal of stylet knob directed backward and slightly elevated. However, slight differences were observed between H. conida form II and the studied specimens in vulva position, 82-83% (range of mean) vs more posterior 83-90%, shorter stylet length 58-62 µm vs 69-86 µm. According to Thorne (1955) hemizonid were weakly developed in the case of H. conida, but in most specimens of studied population it was clearly visible near the end of pharynx and anterior to excretory pore. The morphometric variation of studied Ethiopian specimens with H. conida form II can be affected by specimen fixation and environmental conditions which is in an expected morphometric variation range

over a population of different geographical locations.

Our specimens also resemble *Hemicycliophora typica* de Man, 1921 as redescribed by Loof (1968) in morphometric features such as body length, vulva position, number of lip annules and in body habitus with typical tail shape. However, our specimens differ from *H. typica* in shorter stylet 58-62 μ m vs 63-74 μ m, lower number of body annules 188-108 vs 193-210. Spermatheca is empty vs spermatheca with sperm and males are absent in our samples vs and males are known in *H. typica*. In all sampled populations spermatheca with sperm were not observed.

Furthermore rDNA sequences of the described material shows sister relationship with H. conida with lower number of nucleotide difference (3bp) and 0.2% divergence (Table 3).

7

H. conida form I is similar with *H. conida* form II and the studied specimen in body formation, but it differs in longer body size, longer stylet, higher number of body annules and annules from anterior to excretory pore (see table 2). \land

H. conida is reported from South Africa, Ran with more annules, 33 to 55 compared with 24 to 39 (Loof, 1968), tails of the South African specimens are longer 122.7 compared with 86.9 of the Dutch specimens and also higher than Ethiopian specimens. Among species described from Africa *Hemicycliophora labiata* Colbran, 1960 was the other species which has closely related morphology and morphometric data to Ethiopian specimens but it differs mainly in having sperm cell in spermatheca (Berge, 1981). Male: not found

Locality and host

The specimens were extracted from soil samples, collected from Wonji Shewa sugar industry farm (sugarcane), Melkassa Agricultural Research Center (*Citrus*, grapevine (*Vitis* sp.) Guava (*Psidium* sp.), Banana (*Musa* sp.) and Upper Awash Agro Industry Enterprise farm (Citrus) (Table.1).

Phylogeny

Bayesian Inference 50% majority rule consensus tree of *Hemicycliophora* species specimen under study shows monophyly with *H. conida* (AJ966480) with posterior probability support of (PP:81) (Fig. 4) and with intraspecific divergence of 0.2% and 3bp nucleotide difference (Table 3.). The other *H. conida* with accession number (AJ966471) is paraphyletic with the studied material and showed the divergence value of 1.6%. *H. typica* is also paraphyletic with the studied specimen (Fig. 4).

Nematode systematic

Figure 4. BI 50% majority rule consensus phylogeny of *Hemicycliophora* sp. and with 12 other related species from GenBank sequences based on SSU 18S rDNA data analysed with a GTR+I+G model as estimated by PAUP/Mr Modeltest 1.0b. Branch support is indicated by posterior probably (PP). *Pratylenchus microdorus* and *Tylenchulus semipenetrance* are outgroups.

Gezahegne et. al.

PAIRWISE SIMILARITY COMPARISON OF SSU RDNA

Table 5. Sequence identity matrix or memicycliophora species and closely related taxa with two (vo out aroup
--	--------------

and the second se										-					
Sequen->	Hemic	AJ966	EU669	EU306	AJ966	AY284	AY284	FJ969	AY284	AY284	AY284	AY284	JF972	AY284	AJ966
Hemicyc	1,000	0,957	0,998	0,984	0,983	0,983	0,983	0,960	0,958	0,947	0,906	0,900	0,476	0,887	0,921
AJ966480		1,000	0,956	0,957	0,954	0,956	0,956	0,983	0,986	0,949	0,930	0,900	0,467	0,895	0,926
EU669914			1,000	0,982	0,982	0,982	0,982	0,959	0,957	0,946	0,905	0,899	0,475	0,886	0,919
EU306341				1,000	0,979	0,998	0,998	0,957	0,961	0,945	0,908	0,897	0,470	0,886	0,919
AJ966471					1,000	0,978	0,978	0,958	0,955	0,945	0,903	0,898	0,470	0,890	0,921
AY284629			—			1,000	0,997	0,956	0,959	0,944	0,906	0,896	0,470	0,885	0,918
AY284628							1,000	0,956	0,959	0,944	0,907	0,896	0,470	0,886	0,919
FJ969120								1,000	0,982	0,952	0,925	0,902	0,469	0,894	0,923
AY284622									1,000	0,949	0,939	0,900	0,468	0,895	0,927
AY284625	***									1,000	0,897	0,938	0,462	0.879	0,909
AY284623											1,000	0,952	0,495	0,947	0,879
AY284627												1,000	0,490	0,933	0.866
JF972475			-										1,000	0,481	0,445
AY284633						***								1,000	0,880
AJ966511															1.000

Key for codes in the table

Hemicycliophora

AJ966480 Criconema sp

EU669914_Hemicycliophora_conida

EU306341_Hemicycliophora_thienemanni

AJ966471 Hemicycliophora conida

AY284629 Loofia thienemanni

AY284628_Loofia_thienemanni

FJ969120_Crossonema_sp_CrosSp1

AY284622_Hemicriconemoides_pseudobrachyurus

AY284625 Mesocriconema_xenoplax

AY284623 Hemicriconemoides pseudobrachyurus

AY284627_Mesocriconema_xenoplax

JF972475_Hemicycliophora_typica

AY284633 Paratylenchus microdorus

AJ966511_Tylenchulus semipenetrans

Conclusions

Although morphological description is mostly affected by environmental conditions, it is still a very important feature of systematic (Luc et al., 2010; Coomans, 2002). The molecular phylogeny confirms the sister relationship of the described material with H. conida sequence in the GenBank from deposited The Netherlands by Holterman et al. (2008). Although the information on different forms of species (I vs II) submitted sequence was not described in the authors' publication, H. type II is most common and conida widespread species in The Netherlands (Loof, 1968).

In general, though the described specimen showed some morphological differences with original description of *H. conida* form II, it has more closely related morphological & morphometric appearances with molecular phylogenetic support. So the described material can be suggested as *H. conida* Thorne, 1955. The topologies of tree, agree with previously done phylogenetic tree used SSU rDAN by Megen *et al.* (2009), Bert et al. (2008) and Subbotin *et al.* (2005). This is the first comprehensive report on the *Hemicycliophpra* species from Ethiopia.

Acknowledgements

.

The authors would like to acknowledge VLIR-OUS university development cooperation for financial support during the study period and Ghent University for use of facility. We owe our gratitude to Dr. Baych Mulatu, without which sample collections would not have been possible. We would also like to thank Melkassa Agricultural Research Center for providing laboratory facilities during sample collection and extraction. Last but not least, we would like to thank Andy Vierstraete for sequencing.

References

- Abebe E., Geraert E. 1995. New and known plant parasitic nematodes from Ethiopia. *Nematologica* 41: 405- 421.
- Abraham Tadesse. 2009. Increasing crop production through improved plant protection- volume II. *Plant protection society of Ethiopia* (PPSE) (ed). Addis Ababa, Ethiopia. pp 203-230.
- Agu CM. 2006. Susceptibility of soybean cultivars to root nematodes in south western Ethiopia. *Tropical Science* 46; 143-146
- Berg, EVD. 1981. Further studies on the genus Hemicycliophora de Man, 1921 in South Africa (Nematoda: Hemicycliophoroidea) with a description of a new species. *Phytophylactica* 13: 181-194.
- Bert W., Leliaer F., Vierstraete AR., Vanfleteren JR., Borgonie G. 2008. Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhabditida). *Molecular Phylogenetics and Evolution* 48: 728– 744.
- Blaxter ML., De Ley P., Garey JR., Liu LX., Scheldeman P., Vierstraete A., Vanfleteren JR., Mackey LY., Dorris M., Frisse LM., Vida JT., Thomas WK. 1998. A molecular evolutionary framework for the phylum Nematoda. *Nature* 392: 71-75.
- Bogale, M. Speijer, P.R., Mekete, T., Mandefro, W., Tessera, M., and Gold, C. 2004. Survey of plant-parasitic nematodes and banana weevil on *Ensete ventricosum* in Ethiopia. *Nematology Medit.* 32: 223- 227
- Claudio Marcelo Gonçalves de Oliveira. 2011. Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. *Tropical Plant Pathology* 36: 065-073.
- Coomans A. 2000. Nematode systematics: past, present and future. *Nematology* 2: 3-7
- Coomans A. 2002. Present status and future of nematode systematics. *Nematology* 4: 573-582.
- De Grisse AT. 1969. Redescription ou modifications de quelques techniques utilisées das l'étude des nématodes

phytoparasitaires. Mededeelingen Rijksfakulteit Landbouw wetenschappen Gent 34: 351-369.

- de Man JG. 1880. Die Einheimischen, frei in der reinen Erde und im silssen Wasser lebende Nematoden. *Tijdschr. ned. dierk. Vereen.* 5: 1-104.
- Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Serial* 41: 95-98.
- Holterman M., Rybarczyk K., ELSEN S., Yan Megen H., Mooyman P., Santiago RP., Bongers T., Bakker J., Helder J. 2008. A ribosomal DNA-based framework for the detection and quantification of stresssensitive nematode families in terrestrial habitats. *Molecular Ecology Resources* 8: 23-34.
- Hooper DJ. 1985. Extraction of free-living stages from soil. Pp. 5-30. *In*: Laboratory Methods for Work with Plant and Soil Nematodes (Southey J.F., ed.). Reference book 402. Ministry of Agriculture, Fisheries and Food, London, UK.
- Loof PAA. 1968. Taxonomy of *Hemicycliophora* species from West and Central Europe. (Nematoda: Criconematoidea). *Mededelingen Landbouwhogeschool Wageningen* 68: 1-43.
- Loof PAA., Sharma RD. 1980. Discocriconemella species from Bahia state, Brazil (Nematoda: Criconematidae). Mededelingen van de Faculteit Landbouw- wetendchappen Rijksuniversiteit Gent 45:795-806.
- Luc M., Doucet EM., Fotuner R., Castillo P., Decraemer W., Lax P. 2010. Usefulness of morphological data for the study of nematode biodiversity *Nematology* 12: 495-504.
- Megen VH., Elsen SV., Holterman M., Karssen G., Mooyman P. Bongers T., Holovachov O., Bakker J., Helder J. 2009. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences *Nematology* 11: 927-950.
- Mekete, T, Sikora RA., Kiewnick S., Hallmann J. 2008. Description of plant parasitic

nematodes associated with coffee in Ethiopia. *Nematologia Mediteranea* 36: 69-77.

- Meldal BHM., Debenham NJ., De Ley P., De Ley IT., Van Xeteren JR., Vierstraete AR., Bert W., Borgonie G., Moens T., Tyler PA., Austen MC., Blaxter ML., Rogers AD., Lambshead PJD. 2007. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. *Molecular Phylogenetics* and Evolution 42: 622–636.
- Mesfin Tessera, Wondirad Mandefro, Bekele Kassa. 2009. Review of Research on Diseases of Root and Tuber crops in Ethiopia. In: Abraham Tadesse. 2009. Increasing crop production through improved plant protection- volume II. *Plant protection society of Ethiopia* (PPSE) (ed). Addis Ababa, Ethiopia. pp 169-202
- Mohammed Yosuf, Wondirad Mandefro. Eshetu Ahmed, Girma Adugna, Dereje Tadesse, Temam Hussen and Meki Shehabu. 2009. Review of research on fruit crop diseases in Ethiopia. In Abraham Tadesse 2009 (ed). Increasing crop production through improved plant protection- volume II. *Plant protection society of Ethiopia* (PPSE). Addis Ababa, Ethiopia. pp 231-251.
- O'Banon, J. H. 1975. Nematode survey. FAO Report . IAR, Ethiopia Mimeograph, 29pp
- Ronquist F., Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572-1574.
- Scinhorst JW. 1959. A rapid method for transfer of nematodes from fixative to anhydrous glycerin. *Nematologica* 4: 67-69.
- Seinhorst JW. 1966. Killing nematodes for taxonomic study with hot FA 4-1. *Namatologica* 12: 178-188.
- Seutin G., White BN., Boag PT. 1991. Preservation of avian blood tissue samples for DNA analyses. *Canadian Journal of Zoology-Revue Canadienne de Zoologie* 69: 82-90.

- Siddiqi MR. 2000. Tylenchida, Parasites of Plants and Insects, second (ed.). CABI Publishing, Wallingford, Oxon. 833 pp.
- Subbotin S., Moens M. 2006. Molecular Taxonomy and Phylogeny. In: Perry R & Moens M (Eds). *Plant Nematology* CABI, UK, pp 33-51.
- Subbotin SS., Vovlas N., Crozzoli R., Sturhan D., Lamberti F., Mones M. Baldwin J G. 2005. Phylogeny of Criconematina Siddiqi, 1980 (Nematoda: Tylenchida) based on Morphology and D2-D3 expansion segments of the 28S- rRNA gene sequences with application of a secondary structure model. *Nematology* 7: 927 - 944.
- Swofford DL. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and other methods). Version 4, Sinauer Associates, Sunderland, MA (software program).
- Thompson JD., Higgins DG., Gibson TJ. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix

choice. Nucleic Acids Research 22: 4673-4680.

- Thorne G. 1955. Fifteen new species of the genus *Hemicycliophora* with an emended description of H. *typica* de Man (Tylenchida: Criconematidae). *Proceedings of the Helminthological Society of Washington* 22: 1-16.
- Wondirad Mandefro, Kifle Dagne. 2000. Morphological variation of root-knot nematode populations from Ethiopia. *Pest management Journal of Ethiopia* 4: 19-28.
- Wondirad Mandefro, Tesfamariam Mekete. 2002. Root-knot nematodes on vegetable crops in central and western Ethiopia. *Pest Management Journal of Ethiopia* 6: 37-44.
- Yoder M., De Ley IT., King IW., Mundo-Ocampo M., Mann J., Mark B., Poiras L., De Ley P. 2006. DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. *Nematology* 8: 367-376.